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Out-of-phase oscillatory Turing patterns in a bistable reaction-diffusion system
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A new type of out-of-phase oscillatory Turing pattern is found in simulations of a simple two-variable model
of a bistable reaction-diffusion system consisting of an autocatalytic activator reacting with a substrate that is
replenished by a flow. This class of models can describe pH oscillators or enzymatic reactions. No Hopf
instability is necessary for this type of oscillatory Turing pattern.
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I. INTRODUCTION

When an experimentalist encounters a spatially periodic
pattern that oscillates in time so that neighboring areas are
out of phase, he is likely to categorize the structure as either
a standing wave [1-3] or an oscillatory Turing pattern [4,5].
Out-of-phase, spatially aperiodic, oscillatory clusters (areas
having the same phase and amplitude but no intrinsic wave-
length) can also be found in oscillatory media subject to
periodic forcing, particularly when the forcing frequency is
twice that of the natural oscillations [6-9].

Historically, the first out-of-phase oscillations were found
by Huygens in 1665 in his experiments with two coupled
pendulum clocks placed on a common support (see Ref.
[10]). Out-of-phase oscillations can emerge if two identical
excitable but nonoscillatory zero-dimensional (0D) systems
(e.g., a stirred Belousov-Zhabotinsky (BZ) reaction [11,12])
are coupled via an activator species [13]. This last type of
out-of-phase oscillation is similar to standing waves in 1D
and 2D that arise from a wave instability [14,15]. Rhythmo-
genesis also occurs in a system of two diffusively coupled
continuously stirred tank reactors (CSTRs) in two different
steady states (SS) of the bistable chlorite-iodide reaction
[16]. Two identical SS coupled via mass exchange between a
pair of CSTRs give out-of-phase oscillations, in which the
time delay for communication between the CSTRs plays a
critical role [17]. Out-of-phase oscillations can be found as
well in a system of two OD relaxation oscillators coupled via
an inhibitor species [18] (cf. Fig. 11 below). Nondiffusive
coupling of bistable elements is another possible source of
oscillations [19].

Prior examples of out-of-phase oscillations in spatially
extended systems require a Hopf instability: an eigenvalue of
the Jacobian matrix with positive real part, Re(A), and non-
zero imaginary part, Im(A), at wave number k=0 (classical
Hopf instability) for oscillatory Turing patterns and/or at k
=k, >0 (wave instability or Hopf instability at finite wave
number [14]) for standing waves. Several theoretical works
describe out-of-phase oscillatory Turing patterns resulting
from Turing-Hopf or Turing-wave interactions [20-26].

Here, we report a new type of out-of-phase oscillations
found computationally in a spatially extended bistable sys-
tem with no oscillatory (Hopf or wave) instabilities. Most
investigations of pattern formation in reaction-diffusion sys-
tems have used the oscillatory BZ, BZ-AOT [3,27], or
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chlorite-iodide-malonic acid (CIMA)[28] systems, each of
which possesses a single steady state. The spatiotemporal
behavior of bistable systems is less studied experimentally,
though important works have been performed on stationary
lamellar patterns and replicating spots in the ferrocyanide-
iodate-sulfite (FIS) reaction-diffusion system [29-31]. The
FIS system, as well as other pH oscillators (see Ref. [32]),
may have two steady states in a CSTR.

In Sec. II we describe our models, and in Sec. III we
present results obtained for different dynamical regimes
(bistable, monostable, oscillatory) of the models. Section IV
contains our discussion and conclusions.

II. THE MODELS

We consider a simple system of activator-depleted sub-
strate type. Equations (1)—(3) provide a minimal description
of several pH oscillators and enzymatic reactions.

They also resemble the mechanism of the well-known si-
phon, or “accumulate-and-fire,” oscillator [10]

H*+S — 2H", (1)
A —H', ()
H*+OH — 0. (3)

Here, H" is a proton, and S and A are substrates. [A] is
constant, and [H*] and [S] are the variable concentrations.
Reaction (1) is autocatalytic and leads to depletion of the
substrate with rate v,=k;[H"][S]. Reactions (2) and (3) in-
troduce and remove H* from the system, respectively. Reac-
tion (2) is nonlinear, and its reaction rate v, depends on [H*]
as k,/(K+[H"]). This step may be an enzymatic reaction
(with substrate A) that displays the usual bell-shaped depen-
dence on [H*], or an overall reaction involving a steady-state
intermediate. Reaction (3) is very fast (typically diffusion
controlled), and its rate depends only on the rate of [OH™]
inflow, ko OH ], where k; is the reciprocal residence time of
the CSTR; [OH™], and [S], are input concentrations (con-
centrations in the reactor in the absence of any reaction). The
ordinary differential equations that describe system (1)—(3)
are

d[H"}/dt = ky[H][S]+ ky/ (K + [H*]) = ko([OH]y + [H*]),
(4)
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d[SVdt = - k[H*][S]+ ko([Slo - [SD). (5)

We assume here that [H*]> 1077 M; otherwise, an additional
term koK, /[H*] should be added to Eq. (4), where K,
=10"'* M2. Introducing dimensionless variables 7, s, and /
defined by r=7/k|[S]y, [S]=s[S]y, [H*]=A[S], and param-
eters a=ky/k,[S],, E=[OH7]y/[S]y, y=K/[S]), and B
=k,/ (kl[S]OS), Egs. (4) and (5) are reduced to Egs. (6) and
(7)

dhldt=sh+ BI(y+h)— a(E+h), (6)

dsldr=—sh+ a(l —5s). (7)

The combination of terms —aFE and B/(y+h), ie., (B
—yaE—aEh)/(y+h), serves as a negative feedback, while
the sh term provides a positive feedback on h. The B/(y
+h) term also serves in a sense as a delay between the posi-
tive and negative feedbacks, since it helps to keep the system
near the “low h” steady state (or quasisteady state in the case
of oscillations) roughly determined by B/(y+h)=a(E+h),
allowing the substrate that was depleted by the autocatalytic
reaction to be replenished by the flow, like the water in a
siphon oscillator. The characteristic time of this delay is of
the order of 1/a. In the regime of relaxation oscillations,
1/« is generally much larger than the characteristic time of
autocatalysis (=1). It is necessary that 8/ y> «E for system
(6) and (7) to ensure that 4 always remains positive (an ana-
log of the condition [H*]> 1077 M).

We shall also consider a related model for pH oscillators
that is applicable, for example, to the hydrogen peroxide-
sulfite-ferrocyanide system [33], where the role of the sub-
strate s is played by sulfite ion. The negative feedback is
organized in a slightly different manner

dhldr=sh—bh/(y+h) +ale —h), (8)

dsldr=-=sh+a(l —5s). 9)

When h> 1y, the term —bh/(y+h) can be approximated by
—b/ vy and is equivalent to the negative feedback term —aFE in
Egs. (6) and (7). When h < v, the term ae, the internal source
of h (g is small), corresponds to B/(y+h)= /v and the
term —bh/(y+h) is equivalent to the terms B/(y+h)—aE of
Egs. (6) and (7).

The system (6) and (7) possesses steady states I and IT
with large and small pH (small and large h), respectively, an
oscillatory state, and a bistable regime (BS). In an appropri-
ate parameter plane, specifically the E-a plane, these four
regimes generate a cross-shaped diagram [Fig. 1(a)]. For the
bistable state, which we shall focus on, typical nullclines are
shown in Fig. 1(b). A simple analysis of the nullclines re-
veals that, for bistability to be possible, the rate of reaction
(3) [term —aE in Egs. (6) and (7)] must be lower order in h
than the autocatalytic term (sh in our models). For example,
for a quadratic autocatalytic term (like sh?), the rate of reac-
tion (3) can be either independent of & (zero order) or lin-
early dependent on .

If we add to system (6) and (7) diffusion terms with dif-
fusion coefficients D, and Dg, we obtain a reaction-diffusion
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FIG. 1. Parameter diagram (a) and nullclines (b) for system (6),
(7). (a) y=B=1.0X1073; (b) a=0.0121, E=0.797; line 1, s=0; line
2, h=0.

system, which we shall consider only in 1D, so the Laplacian
A=3/0x?, where x is the spatial coordinate

OhldT=sh+ BI(y+h) — a(E + h) + DyAh, (10)

dsldT=—sh+ a(l —s) + DgAs. (11)

Along the boundary between SSI and BS, the homogeneous
“high h” stationary SSII of system (10) and (11) exhibits a
Turing instability for diffusion coefficient ratios Dg/Dy,
greater than 1 but significantly less than 10. A dispersion
curve for this case is shown in Fig. 2(a), while the depen-
dence of the maximum of Re(A) on Dg/D,, is shown in Fig.
2(b).

Note that the FIS experiments [29] were explained by
assuming that the activator diffusion coefficient, Dy, is
smaller than Dg, though this seems physically unrealistic for
any actual substrate if the activator is indeed H*. With Dy
> Dg, no interesting patterns were obtained in models de-
scribing experiments on a spatially extended FIS system
[34].

Our numerical simulations were carried out with the
FLEXPDE package [35] with periodic and natural (zero flux)
boundary conditions. FLEXPDE refines the triangular finite el-
ement mesh until the estimated error in any variable is less
than a specified tolerance, which we chose as 1074, at every
cell of the mesh. Smaller tolerances did not improve the
results, and tolerances two to five times larger caused almost
no changes.

0.06 - (@) o015 ®
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g
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-0.03 - Ds/Dy,

FIG. 2. (a) Dispersion curves for system (10) and (11) with y
=B=1.0X1073, a=0.0121, E=0.797, D;=0.01, Ds=0.03 [point
marked by open circle in Fig. 1(a)]. Curves I, II, and m are real
parts for steady states I (“small h”), II (“large h”), and middle state
(unstable saddle point), respectively. All eigenvalues are real at all
wave numbers k. (b) Dependence of maximum of Re(A) at k=kr
[maximum of curve II in (a)] on the ratio of diffusion coefficients.
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space/Ay

FIG. 3. Oscillatory Turing structure obtained in system (10),
(11) with parameters of Fig. 2 and periodic boundary conditions. (a)
Dotted and solid curves are two antiphase structures separated in
time by 7/2; (b) space-time plot. Dimensions are 6\ space units
X 1000 time units. Nr=4.89=27/ky. Arrow shows direction of in-
creasing time.

III. RESULTS

A. Bistable region

At the point indicated by the open circle in Fig. 1(a), the
bistable spatially extended system (10) and (11) shows Tur-
ing structures that oscillate out of phase (Fig. 3). The param-
eter region where this behavior occurs lies close to the
boundary between BS and SSI, not far from the cross point
where the BS and oscillatory domains meet. Starting from
the homogeneous SSII, an appropriate initial perturbation is
required to generate the oscillatory Turing pattern. The 0D
system exhibits no oscillations at these parameter values.
The black square in the parameter diagram in Fig. 1(a) indi-
cates a region, further from the cross point, where such os-
cillatory Turing patterns do not occur.

If we choose initial conditions such that part of the system
is in SSI and the rest is in SSII, the front between the two
states moves toward SSI, i.e., the region of SSII expands
(Fig. 4). We say that the SSI is front unstable. Nevertheless,
the homogeneous SSI is a stable state. In a set of computer
experiments, we chose the ratio Dg/Dy, in such a way that
Re(A) <0 [see Fig. 2(b)] to prevent Turing pattern formation
behind the front. If the SSI is front unstable and SSII is
Turing unstable [that is, Re(A)>0 at some k>0, as in Fig.
2(a)], it seems likely that the system may produce oscilla-
tions.

System (10) and (11) can also support stationary Turing
patterns at the same parameters at which oscillatory Turing
patterns occur, as well in a broader range of Dg/Dy. The
shape of a typical Turing pattern is shown in Fig. 5. Com-
paring Fig. 5 and Fig. 3(a), we see that the peaks of the
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FIG. 4. Front movement in system (10), (11) at D,=0.01, Dg
=0.022 [Re(A) <0 at k=kr], =0.0121, E=0.797, zero-flux bound-
ary conditions. Curves 1-12 correspond to times 0, 4, 8, 16, 24, 32,
48, 56, 64, 72, 80, 88, respectively.
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FIG. 5. Stationary Turing patterns in system (10) and (11) at
D,=0.01, Dg=0.04, y=p=1.0%10"5, a=0.0121, E=0.797; Ay
=4.84, two bold (4) and two thin (s) dotted horizontal lines show
SSI (low A, high s) and SSII (high A, low s).

stationary Turing patterns are narrower than the peaks of the
oscillatory Turing patterns. By numerically evaluating the
range of Dg/ Dy, at which the various patterns can survive, we
constructed a diagram (Fig. 6) that summarizes the multista-
bility among the oscillatory and stationary Turing patterns as
well as SSI and SSII. In a small range of negative Re(A), all
four states can be stable, a rather rare occurrence. These
results also imply that the Turing instability is subcritical,
which suggests that Turing patterns may also be found in the
region of SSI [Fig. 1(a)] close to the boundary between SSI
and BS (see Sec. C below).

At values of Re(A) just above zero, transient in-phase
oscillation of Turing patterns also occurs. The period of these
unstable oscillations is roughly 1/Re(A). Eventually, the in-
phase oscillations transform into out-of-phase oscillations
with a significantly shorter period. The period T of the out-
of-phase oscillations varies with Dg/D,, [Fig. 7(b)]. Since
our system has no Hopf instability at the chosen parameters,
and all eigenvalues are real, we need a criterion other than
the imaginary part of the eigenvalue in order to predict the
period of oscillations.

One way to think about the problem is to imagine that the
area around each oscillatory Turing peak, with radius
=N\1/2, where A is the Turing wavelength or the distance
between peaks, acts as a small reactor analogous to a CSTR
and communicates with its neighboring peaks and reactors
by diffusion. In this view, the period of oscillations should be
comparable with the characteristic time of diffusion between
neighboring peaks, TdE)\%/ D, where D is the larger of Dy
and Dg (so D= Dg). As demonstrated in Fig. 7(b), the depen-
dences of T (curve 1) and \3/Dg (curve 2) on Dg are strik-
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FIG. 6. Multistability between states of system (10), (11) at y
=B=1.0X107, a=0.0121, and E=0.797. Re(A) is varied by
changing Dg at D;,=0.01. OT, oscillatory out-of-phase Turing pat-
terns; T, stationary Turing patterns; in-phase OT, unstable oscilla-
tory in-phase Turing patterns. Arrows show transitions between
states.
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FIG. 7. (a) Oscillations at two neighboring Turing peaks (sepa-
rated by Ap=5.0) in system (10), (11) at B=y=1.0X107, E
=0.797, @=0.0121, Dy=0.01, Dg=0.032. (b) (curve 1) Period of
oscillations for out-of-phase Turing patterns; (curve 2) )\Tz/DS;
(curve 3) 1/Re(A); (curve 4) calculated minimum time for out-of-
phase oscillations. Vertical line corresponds to value of Dg at which
Re(A)=0.

ingly similar, which suggests that the diffusion time )\TZ/ Dy
plays a significant role in the out-of-phase oscillations.

The maximum value of 7, which occurs at the smallest
Dy, coincides well with the corresponding value of )\%/Ds.
The minimum 7, at the largest Dy, is in good agreement with
the “minimum” period of oscillations, 7},;,, shown as curve
4. This minimum time is calculated as a sum of four time
intervals for the OD system (6), (7): (i) the characteristic time
for the SSI— SSII transition that starts when parameter « (or
E) reaches the boundary between BS and SSIT; (ii) the relax-
ation time 1/« after the sharp SSI— SSII transition; (iii) the
characteristic time for the SSII— SSI transition, when pa-
rameter « (or E) reaches the boundary between BS and SSI;
(iv) the relaxation time 1/« after the sharp II—T transition.
As seen in Fig. 7(b), Tpin<T<\;>/Dg. This relation holds
for the entire region along the boundary between BS and SSI
and between the cross point and the filled square in Fig. 1(a).

B. Oscillatory region

We also examined the system behavior in the oscillatory
region along the boundary between SSII and the oscillatory
domain, since this region is a continuation of the region in
the BS domain studied above. For this region, the scenario of
pattern changes [again we varied Dg and used Re(A) as the
bifurcation parameter] is quite different [Fig. 8(b)]. At the
most positive Re(A), stationary Turing patterns are observed.
In-phase oscillatory Turing patterns succeed these stationary
Turing patterns at smaller Re(A). At still smaller Re(A), cha-
otic patterns emerge. Finally, at very small values of Re(A),
out-of-phase oscillatory Turing patterns develop [see Fig.
8(a)]. No multi- or bistability between patterns was found,
though homogeneous bulk oscillations occur at all Re(A).
The same sequence of patterns was found for Turing-Hopf
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FIG. 8. (a) Oscillations at two neighboring Turing peaks (sepa-
rated by Ap=6.1) in system (10), (11) at B=y=1.0X107, «
=0.0038, £=0.93, D,=0.01, Dg=0.015. (b) «=0.0038, E=0.93;
open circles, triangles, open rhombs, and squares represent out-of-
phase oscillatory Turing patterns, chaotic patterns, in-phase oscilla-
tory Turing patterns, and stationary Turing patterns, respectively
(they have no relation to the ordinate axis); filled circles (@),
T/ Ty relate to the vertical axis; Ty =1018.

interaction in the Oregonator [21] and Brusselator [36] mod-
els.

A surprising feature of our model is that the period of
oscillation of the Turing patterns does not equal the period of
bulk oscillation, Ty, for the corresponding OD system, but
is approximately 0.5 Ty, for in-phase oscillations and
=0.75 Ty for out-of-phase oscillations. Since out-of-phase
oscillatory Turing patterns in the oscillatory and BS domains
are quite similar, we suggest that out-of-phase oscillations in
the oscillatory domain do not arise from a Turing-Hopf in-
teraction, but from the same phenomenon that causes the
oscillations in the BS domain. Consequently, the period of
these oscillations is unrelated to the frequency of bulk oscil-
lations. On the other hand, the in-phase oscillations probably
do reflect the bulk frequency and occur at the subharmonic
Tyu/2. The chaotic behavior at intermediate values of
Re(A) may be a result of interaction between two quite dif-
ferent frequencies.

C. SSI region

As we pointed out in Sec. A, the Turing instability of SSII
in the BS region close to the SSI region is subcritical. For
this reason, we anticipate that stationary Turing patterns [Fig.
9(c)] can be found in the monostable region SSI close to the
boundary with the BS region, despite the fact that the homo-
geneous SSI has no Turing instability [see the dispersion
curve and nullclines in Figs. 9(c) and 9(a), respectively].
Close to the boundary with the BS region, SSI is excitable
[Fig. 9(b)] and a sufficiently large perturbation can transform
SSI to SSII for some finite time interval. During this time,
Turing patterns can develop. Turing patterns in this region
can also be obtained by starting from a previously formed
stationary Turing pattern in the BS region and smoothly
varying the parameter E (or «) to reach the SSI region.

D. Model (8), (9)

To extend our analysis to other bistable systems, we ex-
amined the related system (8), (9) augmented with diffusion
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FIG. 9. Features of SSI of system (10), (11) at @=0.121, B=vy
=107°, E=0.81; (a) nullclines; (b) excitability: (curve 1) small per-
turbation hy=8hgs, So=sss; (curve 2) large perturbation hy=9hgg,
So=Sgs: hgs=1.1287X 1073, s44=0.91468. (c) dispersion curve,
Re(A), at D,=0.01 and Dg=0.05, Im(A)=0 at all k; (d) stationary
Turing patterns, h=solid line, s=dotted line.

terms Dy Ah and DgAs. Similar to the above results, a region
of out-of-phase oscillatory Turing patterns is found in the BS
domain close to the boundary between the SSI and BS re-
gions and to the cross point of the parameter diagram (Fig.
10). The period of oscillation also shows a strong depen-
dence on the ratio Dg/Dy. The Turing instability is again
subcritical, and out-of-phase oscillatory Turing patterns can
arise at negative Re(A). One example of such oscillations is
shown in Fig. 11(a).

IV. DISCUSSION AND CONCLUSIONS

We have found a new mechanism for out-of-phase oscil-
latory Turing patterns in spatially extended systems. The two
previously studied mechanisms for out-of-phase oscillatory
Turing patterns require a Hopf instability [20,25]. De Wit er
al. explain this spatiotemporal behavior as a resonance be-

(2)0.2
0.1
=
0
1500 2000 2500
time
(b)
SSI BS
1 o
-
5 SSII
0.1 T 1
0.1 1 10
aly

FIG. 10. (a) Oscillations at two neighboring Turing peaks (sepa-
rated by Ap=21.9) in spatially extended system (8), (9) at a
=0.029, b=0.0232, y=0.02, £=0.002, D;,=0.4, and Dg=1. (b) Pa-
rameter diagram for system (8), (9) at y=0.02, £=0.002. Behavior
is sensitive to the ratios a/7y and b/ and is almost independent of
small e. Open circle marks an area where oscillatory out-of-phase
Turing patterns are found.
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FIG. 11. Comparison of out-of-phase (a) oscillatory Turing pat-
terns at two neighboring Turing peaks (separated by Ar=24) in
spatially extended system (8) and (9) with a=0.029, »=0.0232, y
=0.02, £=0.002, D,=0.49, and Dg=1 and (b) oscillations in inhibi-
tory coupled OD FitzHugh-Nagumo (FHN) systems studied in Ref.
(18] dujy/dt=(1/e)[vi—u; 5’ /34Uy, dvjo/dt=A-u,,
—C(vy2—v,,), where u is activator, v is inhibitor, subscripts 1 and
2 refer to FHN systems 1 and 2, respectively, A=0.98, C=0.2, ¢
=0.0009.

tween a subharmonic Hopf mode and a Turing mode
(“subHT mode”) [20]. Yang er al. [25] explain the same be-
havior by using the dependence on the wave number & of the
Floquet multipliers, u(k), associated with the limit cycle. If
(k) reaches 1 at wave number k=ky/2, oscillatory out-of-
phase Turing patterns with doubled wavelength 2\ (corre-
sponding to the wave number kr/2) should occur. In our
bistable system, there is no Hopf instability and no limit
cycle.

Based on the limited set of bistable systems we have in-
vestigated, we can formulate the following tentative criteria
for out-of-phase oscillations of Turing patterns in a bistable
system: (1) SSII is Turing unstable; (2) SSI is front unstable;
(3) the system is close to the oscillatory region and to the
cross point of the cross-shaped diagram; (4) the SSI— SSII
transition is autocatalytic.

Intuitively, we explain the oscillatory behavior as a result
of diffusive coupling (with an associated time delay) of iden-
tical small “reactors” separated in space by the Turing wave-
length and leading to rhythmogenesis. As we noted above,
coupling of two relaxation FitzHugh-Nagumo (FHN)
steady-state subsystems [see the captions to Fig. 11(b) and
Ref. [18]], via the inhibitor in FHN rather than the substrate
in our models, can lead to out-of-phase oscillations. We re-
calculated the FHN system and found out-of-phase oscilla-
tions that strikingly resemble the out-of-phase oscillations in
our spatially extended systems (8), (9) or (10), (11) (Fig. 11).
The comparison of Figs. 11(a), 11(b) (actually a comparison
of a spatially extended system with two coupled OD systems)
would be even more compelling if out-of-phase oscillations
were found for coupled 0D systems (6), (7) or (8), (9) at the
same parameters at which we obtain out-of-phase oscilla-
tions in the spatially extended 1D systems. A detailed linear
stability analysis of such coupled four-variable (s;,h;,s,,%,)
systems with additional mass exchange terms ky,(h,—h;) and
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kg(s,—s,) shows no such oscillatory solution, at least of the
supercritical type. We also searched for oscillations in these
coupled systems by direct simulation with large perturbation,
but no subcritical Hopf instability was found. It is likely that
explicit introduction of a time delay, analogous to that pro-
vided by diffusion in the spatially extended systems, is nec-
essary to obtain oscillations in these coupled reactor systems.

Although in setting up our model we have identified h
with H*, the role of & can be played by any autocatalytic
species. For example, out-of-phase pigment patterns on the
shell of a mollusk (sea snail) have been explained using
activator-depleted substrate (with additional long-range in-
hibitor) type equations [37] analogous to Egs. (6), (7) or (8),
(9). When h is a large macromolecule, the relation Dg> D,
can easily be fulfilled. Even when £ is a proton, if reactions
(1)—(3) proceed in a buffered medium or in a medium con-
taining negatively charged polymers to which H* can be
bound (immobilized), the effective diffusion of protons may
be slower than that of the substrate.

Turing patterns oscillating in phase were found recently in
the BZ-AOT system [21], and there are several experiments
on standing waves in reaction-diffusion systems [2,3]. To the
best of our knowledge, there is no experiment demonstrating
out-of-phase oscillatory Turing patterns in reaction-diffusion
systems. It is worth noting, however, Perraud et al.’s study of
the CIMA reaction in 1D [5], where a single small area
(point) emitted waves (rather than stationary patterns) out of
phase to the left and to the right. It can be difficult to distin-
guish between standing wave patterns and out-of-phase os-
cillatory Turing patterns in an experiment, though theoreti-
cally this difference is evident, for example, from the
dispersion curve. We emphasize the distinction between
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FIG. 12. Space-time plots of out-of-phase oscillatory Turing pat-
terns [upper panel, from Fig. 3(b)] and standing waves (lower
panel, from Ref. [38]). Arrow shows direction of increasing time.

these two types of pattern in Fig. 12, in which the differences
are clearly seen. The maxima and minima in standing waves
are separated by very thin nodal lines. If we superpose two
antiphase snapshots of a standing wave, they should cover
the entire area. The maxima and minima in oscillatory Turing
patterns are separated by a rather broad quiescent band of
thickness A1, and a superposition of antiphase snapshots does
not cover the entire area.

With this work, there now exist three different mecha-
nisms by which out-of-phase oscillatory Turing patterns may
arise. We anticipate that experimental evidence of each of
these will emerge soon.
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